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A B S T R A C T  

In this paper we prove a finiteness theorem for the spectral sequence 
(E~(V), (dv)~) associated to a transitive foliation ~" on a compact mani- 
fold M, and to a fiat vector bundle E over M with flat connection V. We 
also compute some examples of homogeneous Lie foliations on compact 
connected homogeneous spaces. 

1. I n t r o d u c t i o n  

First, recall tha t  for a smooth foliation 9 v on a smooth manifold M,  the spectral 

sequence (E~, d~) = (Ei(jr) ,  di) associated to j r  arises from the filtered de Rha.m 

complex (A(M), d) of (M, jr),  and converges to the real cohomology H(M) of M 

(see for example [27, 17, 29]). I t  is clear that  (E~ '~ dl) and E2 '~ are respectively 

the complex (Ab(M), d) of basic forms and the basic cohomology Hb(M) of jr.  

K. S. Sarkaria [27] has proved that  E2 is finite dimensional if Jr is transitive and 

M compact.  This result has been used in [29, 1, 19] to prove tha t  E2 is finite 

dimensional when j r  is Riemannian and M compact.  On the other hand, also 

with this hypothesis, the finite dimensional character and duality of Hb(M) have 

been studied in [16, 17, 28, 11, 18, 31, 23, 3, 19]. 

Let j r  be a smooth foliation of dimension p and codimension q on a smooth 

manifold M. Let E be a flat vector bundle over M with flat connection V. Then 

the usual filtration of A(M) induces a filtration in the complex (A(M, E), d r )  of 
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smooth forms on M with values in E. With this decreasing filtration, 

(A(M, E),  d r )  is a filtered complex and we have the corresponding spectral se- 

quence (Ei(V),(dv)i) associated to )r  and E, which collapses at the 

(q+ 1)-th term and converges to the real cohomology H(M, E) of (A(M, E),  d r ) .  

On the other hand, we consider in A(M, E) the usual C~-topology, turning 

(A(M, E),  d r )  into a Fr4chet topological complex. Each Ei(~7) has the induced 

topology and (dv)i is continuous. El(V)  in general is not Hansdorff obtaining 

two new topological complexes, the closure 0 of the trivial subspace of E1 (V) 

and the reduction El(V) = E l ( V ) / 0  of El(V).  We shall denote by F_~(V) the 

cohomology H(E1 (V), (d r ) l ) .  

A case of particular interest is the one where E = C(9 r)  is the flat vector 

bundle associated to the Molino commuting sheaf [20, 22] of a transitive foliation 

~- on a compact connected manifold M. Another particular case is the following. 

Consider a closed one-form 7 C AI(M) and let V be the flat connection on 

the trivial vector bundle E = M x R with connection form 7 with respect to 

the smooth section a of E given by a(x) = (x, 1). Then the spectral sequence 

(Ei(3`), (dr)i) = (E/(V), (dr) i )  associated to 5 c and 3' arises from the filtered 

complex (A(M), dr) = (A(M, E), d r ) ,  where d r = d + 7A. Note that each Ei(7) 
depends only on the class [7] C H 1 (M), and that [3`] = 0 if and only if Ei ("/) = Ei 
for all i. 

In this paper we study the spectral sequence (Ei(V), (dr) i ) ,  and using the 

Riesz theory of compact operators we prove that for a transitive foliation 9 v 

on a compact manifold M and a flat vector bundle E --+ M with flat connec- 

tion ~', the cohomologies E2(V) and F-a (V) are finite dimensional Hausdorff and 

E2(V) TM ]E2 (V) canonically. We also compute some examples of homogeneous 

Lie foliations on compact connected homogeneous spaces. 

The paper is structured as follows. In Section 2, using the techniques of [27] we 

construct a compact operator and a parametrix for the complex (A(M, E), d r )  

of smooth forms on a compact manifold M with values in a flat vector bun- 

dle E ~ M with flat connection V. In Section 3 the results of Section 2 are 

applied to the case where M is equipped with a transitive foliation 5 r .  Section 4 

is devoted to the study of the spectral sequence (Ei(V), (dr) i )  of the filtered 

complex (A(M, E),  d r )  associated to a smooth foliation .T" on a smooth mani- 

fold M, and to a fiat vector bundle E over M. In Section 5, using the results 

of Section 3 and the Riesz theory of compact operators [13, 25], we prove that  

for a transitive foliation 9 r on a compact manifold M and a flat vector bundle 

E over M, the cohomologies E2(V) and F-e (V) are finite dimensional Hausdorff 
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and E2(V) ~ 1Fa(V) canonically. Finally, in Section 6 we study some exam- 

ples of homogeneous Lie foliations ~ on compact connected homogeneous spaces 

M = FA\GA, and compute the spectral sequence Ei (resp. Ei(V)) associated to 

Y (resp. to Y and the Molino commuting sheaf C(Y)). 
The results of this paper are applied in [8, 9] to prove a finiteness theorem for 

Riemannian foliations on compact manifolds, and to show that  every Riemannian 

foliation on a compact manifold is tense (in the sense of [17]). In particular, it 

follows that  the main tautness theorems for Riemannian foliations on compact 

manifolds, which were proved by several authors, are immediate consequences of 

our results. 

2. Compact operators 

In this section, using the techniques of [12, Vol. II] and [27], we construct a 

compact operator and a parametrix for the complex A(M, E) of smooth forms 

on a smooth compact manifold M with values in a fiat vector bundle E over M .  

For any smooth manifold M, TM denotes the tangent bundle of M, ~ (M)  = 

FTM the Lie algebra of vector fields on M, and A(M) the graded algebra of 

smooth forms on M. If E is a smooth vector bundle over M, then F E  denotes 

the A~ of smooth sections of E. 

Let M be a smooth manifold, and let E be a smooth vector bundle over M. 

Consider the graded A(M)-module 

A(M, E) = FL(ATM, E) = P(AT*M | E) = A(M) | FE 

= HOmAO(M ) (AX(M), r E )  

of smooth forms on M with values in E. We shall topologise A(M, E) with the 

usual C~-topology turning A(M, E) into a Pr&het topological vector space (in 

particular, we have A(M, M • ~) = A(M)). Evidently, for any X e X(M), 

the interior product i(X): A"(M,E) ~ Ar-I(M,E) is continuous. Let V be 

a connection on E. Then the covariant exterior derivative dr :  A"(M, E) --+ 
A"+I(M,E) and the covariant Lie derivative 0v(X):  A"(M,E) ~ A"(M, E) for 

X E X(M) are continuous. Moreover, we have [12, Vol. II] 

i( X) 2 = O, i([X, Y]) = [0v(X), i(V)], 0v(X)  = i( X)dv + dvi( X), 
(0v (IX, Y]) - [0v(X), 0v(Y)]) a = -R(X ,  Y) h a, d2 a = R h a, 
(Ov(X)dv - dvOv(Z))a = i ( X ) R A a  for X , Y  �9 X(M),c~ �9 A(M,E), 

where R is the curvature of V. Thus, if the connection V is flat, then 

0v([X, Y]) = [0v(X), 0v(Y)], d 2 = O, Ov(X)dv = dvOv(X). 
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On the other hand, let E '  be a second smooth vector bundle over a smooth 

manifold M' ,  and let ~5: E ~ --+ E be a smooth bundle map inducing ~o: M'  -+ M 

and restricting to linear isomorphisms ~5~: E~ --+ E~(x) in the fibers. Then ~5 

induces a continuous linear map ~5#: At(M, E) --+ Ar(M ', E') given by 

(~#a)(x) = ~5~(a(~(x))), x E M',  a E A~(M,E), 

where ~5x#: L(A~T~(x)M, E~(x)) --+ L(ArTxM ', Fix) denotes the composition of 

the linear map T*: L(A~T~,(~)M,E~,(~)) --+ L(ArTxM',E~(~)) with the linear 

isomorphism (~5~-1). : L(A~T,M ', E~(x)) --+ L(A~T,M ', EL). If Y E X(M')  and 

X E E(M)  are p-related, then ~# o i(X) = i(Y) o ~#. 
Now, let V' be the pullback connection on E ~ of V along q0. Then ~# o dv = 

dr ,  o ~5 #. Thus, if Y E 3~(M') and X E X(M) are qo-related, then ~5 # o 0v(X)  = 

0 v , ( r )  o 

We shall say that a vector space V C :~(M) is t r an s i t i v e  if the evaluation map 

ex: V --~ T~M is surjective for all x 6 M. According to Section 2.23 in [12, Vol. I], 

we can always choose a finite dimensional and transitive space V C X(M). 

THEOt~EM 2.1 : Let M be a compact manifold. Let E be a smooth vector bundle 

over M and V a connection on E. Then there exist two continuous linear maps 
s, h: A( M, E) -~ A( M, E) o/degrees 0 and -1  respectively, such that 

(i) s is a compact operator; 
(ii) /f~7 is fiat, then 1 - s = dvh + hdv. 

Proof." For all X E X(M), denote by 3~ E ~(E)  the unique horizontal lift of X 

with respect to V. Let Xt, t E R (resp.)(t ,  t E R) be the flow of the vector field 

X E X(M) (resp. of the horizontal lift ) (  E Jg(E) of X). Then, for all t E R, 

)(t: E --+ E is an isomorphism of vector bundles inducing Xt: M --~ M. Denote 

by Xt#: A(M, E) ~ A(M, E) the continuous linear isomorphism induced by )Ct. 

Now, consider a finite dimensional transitive space V C ~ (M)  and choose 

a Riemannian metric g on V. Let [g[ be the volume element, and let f be a 

smooth nonnegative function on V supported in a compact neighbourhood of 

zero and such that f v  f ( X ) .  [g[ = 1. Then we define the continuous linear maps 

s, h: A(M, E) --+ A(M, E) by 

(sa)(x) = f (xl#a)(x) �9 f ( X ) .  Ig[ E L(A~TxM, E~), 
(2.2) J v  

(ha)(x) = - (i(X)Xt#a)(x) . f ( X ) .  dt. IgI E L(Ar-IT~M, Ex) 

for x E M, a 6 Ar(M,E).  
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Next, from transitivity of V it follows that the evaluation map e: M x V ~ TM 
(given by (x,Z) ~ X(x) �9 T,M) is surjective. Therefore, N = Kere  is a 

subbundle of the trivial Riemannian vector bundle M x V over M. Let N • ~ T M  
be the orthogonal complement of N, and consider the orthogonal projection 

7r: M x V = N @ N  • --+ N. Denote by r M x V --~ N x M the smooth 

map defined by (x,X) ~-+ (Tr(x,X),Xl(x)). It is easy to see that  there exists 

a neighbourhood U C V of zero such that  r is a diffeomorphism on M x U. 

Choose the function f such that  s u p p f  C U, and denote by it the v o l u m e  

b u n d l e  f t (M) of M. Then by a technique similar to that used in [27] it follows 

that  there exists a smooth section K of the smooth vector bundle 

L(M x L(ArTM, E), L(ArTM, E) [] it) = L(ArTM, E) [] (L(A~TM, E)* | it) 

over M x M such that  

(sa)(x) = fMg(x,y)a(y) ,  x e M, a e Ar(M,E). (2.3) 

Hence, s = s(V,f,g,V): A(M,E) --+ A(M,E) is a s m o o t h i n g  o p e r a t o r  (see 

[5]) with s m o o t h  ke rne l  K.  Thus s is a c o m p a c t  o p e r a t o r .  This proves (i). 

To prove (ii), consider the formula 

(2.4) 9v(X)  = dvi(X) + i(X)dv, X �9 3~(M). 

By a direct computation we obtain 

(2.5) Xt#gv (X)a dX]a[ - , a � 9  X � 9  t � 9  
ds s=t 

Since X is Xt-related to X for any X �9 ~(M) ,  t �9 R, we have 

(2.6) i(X) oXt # = X ~ o i ( X ) ,  X � 9  t � 9  

Now, for each fixed t E R, let jr: M --+ X x M be the inclusion map given by 

x ~ (t, x). Then, for a e A(R x M, R x E) -- A(R x M) @AO(M) FE, we obtain 

/0 (2.7) dv a.  dt = av jga ,  dt. 

Similarly, for each fixed X e V, let jx: M -+ M x V be the inclusion map given 

by x ~-+ (x, X).  Then, for a e A(M x V, E x V) ~ A(M x V) | FE,  we 

have 

(2.S) 
Yv Jv 
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Finally, suppose that the connection V is flat. Then, for each X C X(M) and 

t E JR, the automorphism of vector bundles )~t: E ~ E inducing Xt: M -+ M 

preserves the connection V. Hence we have 

(2.9) d v o X ~  # = X  # o d v ,  Ov(X) o X  # = X  # o o v ( x ) ,  X C E ( M ) , t E R .  

Thus if a �9 A(M, E), then by (2.2), (2.4), (2.5), (2.6), (2.7), (2.8) and (2.9) it 

follows that  

kL' (dvh + hdv)a = - Xt#(dvi(X)  + i (X )dv )a ,  f ( X )  . dt.  IgI 

l.io'" = - o r ( x > ,  i ( x ) .  d t .  Igl 

= - - i ( X ) .  Igl - -  o ,  - I 

Remark: From [5] it follows that the operator s: A(M, E) + A(M, E) is in 

fact of t r ace  class, the trace being defined by Tr s = fM Tr K(x,  x). Assume 

now that  the vector bundle E over M is flat with flat connection V. Denote 

by H(M, E) the cohomology of the complex (A(M, E), dr ) ,  and by s r the map 

s: At (M,  E) --+ At(M, E). Then ~ r ( - 1 ) ~  Tr s r is the Euler characteristic of the 

finite dimensional cohomology H(M, E). Moreover, Theorem 2.1 proves that  h 

is a p a r a m e t r i x  for A(M, E). 

Example: Let M, V, g and f be as in Theorem 2.1. As usual we will equip the 
graded algebra A(M) with the exterior derivative d, the interior product i (X) 

and the Lie derivative O(X) for any X �9 X(M). Consider a one-form ~/ �9  A 1 (M), 

and the operators d r = d + "), A: A~(M) ~ Ar+I(M), Or(X ) = O(X)+ i(X)7. : 
A"(M) --+ At (M)  given by dra = da + 7 A a, Or(X)a = O(X)a + i (X)7 ,  a for 

a �9 A"(M) and X �9 3r 

Now, let E = M x l~ be the trivial vector bundle over M, and let K7 be the 

connection on E with connection form 7 with respect to the smooth section 

a �9 FE  defined by a(x) = (x, 1). Then we have A(M, E) = A(M), dv = d r 

a n d 0 v ( X )  = Or(X), X e X(M). For e a c h X  �9 X(M) a n d t  �9 •, let)~x, be 

the unique smooth positive function on M determined by Xt#a = Ax, �9 a. In 

particular, "~Xo = ~0, = 1. It is clear that the functions (t, x) ~+ )~x, (x) on R x M 

are smooth. Similarly, the function (t, x, X) ~-+ ,kx, (x) on l~ x M x V is smooth. 

It follows that  the continuous linear automorphisms Xt#: A(M) --+ A(M) are 

given by a ~-+ X ; a .  )~x~. Formula (2.5) implies that 

d)~ x, ,=t (2.10) i (X)Xg' I .  )~x, = ds " 
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Therefore, from (2.2) it follows that  the continuous linear maps s, h: A ( M )  -~ 

A ( M )  (of degrees 0 and -1  respectively) are given by 

= f f(x). I l, 
(2.11) J v  

/ v ~ o  1 (ha)(x)  = - ( i ( X ) X ; a ) ( x )  . ~x , (x )  . f ( X )  . d t .  lgl. 

Moreover, according to Theorem 2.1, there exists a smooth section K of the 

smooth vector bundle 

L ( M  x ArT*M,  A~T*M [] fl) = A~T*M [] (A~TM | ~t) 

over M • M such that  

= fM K(x, (2.12) 

Hence, s = s(V, f ,g ,7) :  A ( M )  --~ A ( M )  is a smoothing operator with smooth 

kernel K. Thus s is a compact operator of trace class with trace 

s 

On the other hand, since d~/ E AZ(M) is the curvature of V, it follows that 

the connection V on E is flat if and only if the one-form ~ E A 1 (M) is closed. 

Assume now that  ~ C A I(M) is a closed one-form (so that V is a flat connection 

and d~ = 0). Then, applying (2.9) we get 

(2.13) X ~ / =  dlog Ax, + "y. 

Hence, from (2.10), (2.11) and (2.13) (also, by Theorem 2.1) we obtain the 

formula 

(2.14) 1 - s = d.rh + hd~. 

Then we have the following result. 

THEOREM 2.15: Let M be a compact manifold, and let ~/E A I ( M )  be a one- 

form. Consider in A ( M )  the continuous operator d. r = d + ~A. Then there exist 

two continuous linear maps s, h: A( M)  --+ A( M)  of degrees 0 and - 1  respectively, 

such that 

(i) s is a compact operator; 

(ii) i f  ~ is a closed one-form, then 1 - s = d~h + hd~. 
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Remarks: (1) If q, E AI(M) is closed, then ~-~( -1)~Trs  ~ is the Euler 

characteristic of the (finite dimensional) cohomology Hr(M ) of the complex 

(A(M), dr), and h is a parametrix for (A(M), dr). 

(2) Theorem 2.15 generalizes Lemmas 7 and 8 of [27]. That  is the case where 

--- 0 (so that  d r = d and Ax~ -- 1). 

3. Compact  operators for transitive foliations 

In this section we discuss the case where M is equipped with a transitive foliation. 

Let M be a smooth manifold, and let U be a smooth foliation on M. Denote 

by TU C TM the integrable subbundle of vectors of M tangent to U, and by 

:E(~-) = F T U  C X(M) the Lie subalgebra of vector fields tangent to U. Consider 

a smooth vector bundle E over M. Then a decreasing filtration FkA(M, E) by 

A(M)-modules of A(M, E) is given by 

(3.1) FkA'~(M,E) = {a e A~(M,E) ]i(X1 A . . .  A X~-k+l)a  = O, Xi e Y.(F)). 

Clearly, FkAr(M,E) = FkAr(M) ~AO(M) FE, where FkA(M) is the usual 

decreasing filtration of A(M) = A(M, M x R). In particular, F~ E) = 

A~(M, E) and F~+IA~(M, E) = O. This filtration is invariant under the interior 

products i(X) for X E :E(U). Now, let V be a connection on E. Then the 

filtration is invariant under dv and 0v(X)  for X E :E(U). Hence, if ~7 is fiat, 

then (A(M, E), d r )  together with this filtration is a filtered complex of A(M)- 
modules, so that we have a spectral sequence (Ei(V), (dr) i ) ,  which converges to 

H(M, E) after a finite number of steps. 

On the other hand, consider the Lie algebra :E(M, 5 r)  C :E(M) of infinitesimal 

transformations of (M, U). The foliation U is called t r a n s i t i v e  if :E(M, 5 r)  c 

:E(M) is a transitive space. If M is compact and 5 r transitive, then it is clear that  

we can always extract a finite dimensional transitive subspace out of :E(M, U). 

THEOREM 3.2: Let U be a transitive foliation on a compact manifold M, and 
let ~ be a connection on a smooth vector bundle E over M. Then there ex- 

ist two continuous linear maps s, h: A(M, E) -+ A(M, E) of degrees 0 and -1 
respectively, such that 

(i) s is a compact operator; 

(ii) s(FkA(M, E)) C FkA(M, E) for all k; 

(iii) h(FkA(M, E)) C Fk-IA(M, E) for all k; 

(iv) i f V  is fiat, then 1 - s = dvh + hdv. 
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Proof." Consider a finite dimensional transitive space V C 3~iM, ~-), and let g 

and f be as in Theorem 2.1. Now, we define the operators s, h: A(M, E) --+ 
A(M, E) by i2.2). Then, from Theorem 2.1, (i) and (iv) follow. 

On the other hand, for each t E R and X E V, let jr: M --+ R• M and j z :  M -+ 
M x V be the inclusion maps. Then, for Y C :~(M), a E A(R • M , ~  > E) and 

/3 C A(M • V, E • V), we obtain 

/o 1 /o i(Y) jff  a . d t =  i (Y ) j~a .d t ,  
(3.3) 

A similar result holds for fly(Y). Clearly, for t E Ii( and X , Y  E 3~(M), we have 

(3.4) i(Y) o X ?  = X ?  o i i (X t ) .Y  ). 

Then, since (X t ) .Y  C :~(~) for t E l~, X E 3~(M, 9 v) and Y E 3~i~), by (3.3) and 

(3.4), (ii) and (iii) follow. I 

For E = M x I~, we have A(M,E)  = A(M) and FkA(M,E)  = FkA(M). 
Then, appplying Theorems 2.15 and 3.2 we obtain the following result. 

THEOREM 3.5: Let Jr be a transitive foliation on a compact manifold M, and 

let ~/ E A 1 (M) be a one-form. Then there exist two continuous linear maps 

s, h: A( M) --+ A( M) of degrees 0 and -1  respectively, such that 

(i) s is a compact operator; 

(ii) s(FkA(M)) C FkA(M) for all k; 
(iii) h ( F k A ( i ) )  C Fk - iA(M)  for all k; 

(iv) if  q, is closed, then 1 - s = d.~h + hd.~, where d r -~ d + 7 A : A iM ) --+ A(M) 
is given by a ~-+ da + "I A a. 

4. Spectral  sequences  associated to foliations 

In this section we study the spectral sequence (Ei(V), (dr) i)  of the filtered 

complex A(M, E) considered in Section 3. 

Let M be a smooth manifold of dimension n, and let 3 c be a smooth 

foliation of dimension p and codimension q on M. Recall that  the spectral 

sequence (Ei,di) = (E~(~),di) associated to 7" arises from the decreasing 

filtration FkA(M) by differential ideals of the de Rham complex (A(M), d) 
of M. Since Fq+IA(M) = 0 and F~ = A(M), (E~,d~) collapses at the 

(q + 1)-th term and converges to the real cohomology H i M  ) of M. Each Ei has 
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the induced topology being di continuous, and obtaining that E1 in general is 
not Hausdorff (see [14]). 

Now, consider a Riemannian metric on M and the orthogonal complement 
Q = T ~  l c TM of T$-. Then we obtain the associated bigrading of A(M) 
given by 

(4.1) Au"(M) = P(AUQ * | A~T*-r )  = r A ~ Q  * | r A V T * $  -. 

The filtration of A(M) may be represented by FkA(M) = (~)u>k A""(M),  and 

the exterior derivative d decomposes as the sum of the homogeneous operators 

d~-, dl,0 and d2,-1 of bidegrees (0, 1), (1, 0) and (2 , -1 )  respectively, which satisfy 

the usual identities. In particular, d~= = 0. So we obtain the following topological 

identities of bigraded topological differential algebras: 

(4.2) (Eo,do) = (A(M),dT), (El,d~) = (H(A(M),dT),dl,o.). 

It follows that E2 TM H(H(A(M), dj:), dl,0.), El '~ = Ab(M), and E2 '~ = Hb(M), 
where Ab(M) = A"~ N Kerdj:  and Hb(M) = H(Ab(M),d) are respec- 

tively the differential algebra of basic forms and the basic cohomology of 9 r. 

E ~ -= H(FAT*9 v, ds~) is the foliated cohomology of 5 r ,  and Ei 'v and E'2 'p are iso- 

morphic to the transverse complex and the transverse cohomology respectively 

(cf. [14]). Moreover, E'2 'p is also isomorphic to the ~--relative de Rham cohomol- 
ogy (see [26]). 

On the other hand, let E be a smooth vector bundle over M. Then we have 
the associated bigrading of the A(M)-module A(M, E) given by 

(4.3) AU'V(M, E )  = r ( h U Q  * | h V T * ~  - | E )  = A",~(M) | ) rE, 

and the filtration FkA(M, E) of A(M, E) may be represented by 

(4.4) FkA(M, E) = ( ~  A ~'" (M, E) = FkA(M) | rE. 
u>k 

Consider now a connection ~: FE = A~ -~ AI(M,E) on E. Then V 

decomposes as the sum of the partial connections V~-: F E  --+ A ~ (M, E) and 

vl ,~ F E  -~ AI,~ E) on E. It follows that the covariant exterior derivative 

dv may be decomposed as the sum of the homogeneous operators dv~ , dvl.o and 

d2,-1 = d2,-1 | 1 of bidegrees (0, 1), (1, 0) and (2, -1 )  respectively, where dv~ 
(resp. dvl.o) is induced by d r  and V ~- (resp. by dl,0 and Vl'~ 

Assume that the vector bundle E is 9V-foliated with flat partial connection V 3=. 
Then d2~ = 0, so that d~(FkA(M,E)) C Fk+IA(M,E) for all k. Therefore, 
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we have the bigraded topological complexes (E0(V), (dr)0) and (A(M, E), dye) ,  

and the bigraded topological space E1 (V). So we obtain the following result. 

PROPOSITION 4.5: We have the following topological identities, 

(4.6) (Eo(V), (dr)0) = (A(M,E),dvJ:), El(V) =- H(A(M,E),dvJ:), 

of bigraded topological complexes and bigraded topological spaces respectively. 

We define the graded Ab(M)-module Ab(M, E) of E-valued basic forms of $" 

by 

(4.7) Ab(M, E) = E~'~ = A"~ n Kerdv~ 

= {a E A(M,E) [i(X)a = Ov(X)a = 0 for X e ~(~')}.  

In particular, A~ E) C FE is the A~ of ~'-foliated sections of E. 

E1 ~ (V) = H(FL(ATiT, E), dv~) is the E-valued foliated cohomology of $'. 

Now, denote by A(M), Ab(M), A(M,E) and Ab(M,E) the corresponding 

sheaves of germs. Then, for each u, 0 < u < q, 

(A ~' (M, E), dye )  ~ (A ~'" (M) | Ab ~ (M, E), dj: @ 1) 

is a fine resolution of the sheaf A~(M, E) TM A~(M) | A~ E) (cf. [32]). 

Thus 

(4.8) E~'" (V) = H(M, A~(M, E)). 

It follows that  E1 ~ (V) = H(M, Jt~ E)). 

For example, the normal bundle E = ~:T = TM/T.T of $" is canonically 3 v- 

foliated by the partial Bott connection V J:. The elements of A~ v:Y) are the 

transverse fields associated to the infinitesimal transformations of ~', and the 

elements of E~ = HI(M,A~ may be interpreted as infinitesimal 

deformations of .T (see [15]). 

For E = A~v*5 r and V~x = O(X), X E :~(jr), the partial Bott connection, we 

have A~(M)=A~ AUv*iT), (E o~'', do) = (E~ (dr)0), and E lu'" = E  10,. (V)= 

H(M,A~(M)). In particular, E ~ = H(M,A~ Since (Ab(M),d) is a reso- 

lution of the constant real sheaf 74, it follows that E~" = H~(H(M, ,4b(M))). 
Suppose now that  E is a fiat vector bundle over M with flat connection V. 

The spectral sequence (Ei(V), (dr)i)  associated to 5 r and E arises from the de- 

creasing filtration FkA(M, E) by A(M)-modules of the complex (A(M, E), dr) .  

(Ei(V), (dr) i)  collapses at the (q + 1)-th term and converges to the cohomology 
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H(M, E). It is clear that the multiplication map Ei |  -4 Ei(V) is a homo- 

morphism of complexes, and that Ei(V) has the induced topology being (dv)i 

continuous for all i. E1 (V) in general is not Hausdorff. 

Since d 2 = 0, the homogeneous operators dye ,  dvl.o and d2,-1 satisfy 

d27 2 = d2,_ 1 = dv~dvl,o + dv~,odv~ -- 0, 
(4.9) 

dv~,od2,-1 + d2,-ldv~.o 2 = dv~,o + d2,-ldv7 + dyed2,-1 = 0. 

Hence we obtain the following result. 

PROPOSITION 4.10: We have the identities (4.6) and the following topological 
identity of bigraded topological complexes: 

(4.11) (El(V), (dr) l )  = (H(A(M, E), dvT), dvl,o.). 

Therefore, E2(V) ~ H(H(A(M,E),dvJ:),dvl,O.), (Ei '~ -- 

(AD(M, E), dr) ,  and E2'~ -- Hb(M, E) is the E-valued basic cohomology of 

5 r.  In particular, H~ E) = H~ E) is the vector space of parallel (or locally 

constant) sections of E. Clearly, the canonical map H~(M, E) -4 Hk(M, E) is 

injective for k -- 1. Similarly, E2'v(V) is isomorphic to the E-valued ~--relative 

de Rham cohomology. 

Let $ be the sheaf of germs of parallel sections of E. Then (A(M,E),dv) ~- 
(A(M) | C, d | 1) is a fine resolution of the sheaf s It follows that  H(M, E) =- 
H(M,~) .  

PROPOSITION 4.12: For each u > 0 we fiave: 

(4.13) E~"(V) = H(M, c4~(M) | E~"(V) = H~(H(M, AD(M) | 

Proo~ It is easy to check that 

(A ~'" (M, E), dye)  -~ (A"'" (M) | E, dj= | 1) 

is a fine resolution of the sheaf A~(M, E) ~- A~(M) | It follows that  E~" (V) = 

H(M, A~(M) | s 
Clearly, (Ab(M, E), dr )  -~ (Ab(M) | E, d | 1) is a resolution of the sheaf E, 

and (El(V), (d r ) l )  = (H(M, Ab(M) | s (d | 1).). The desired result follows. 
| 

Now, let E -- M • R be the trivial vector bundle over M, and consider two one- 

forms % 3" E A 1 (M). Let V (resp. V') be the connection on E with connection 

form 0' (resp. 3 ,~) with respect to the smooth section a E FE  defined by a(x) = 
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(x, 1). Then it is easy to see that  ~ / -  ~' E d(A~ if and only if there exists 

an automorphism of vector bundles ~5: E :> E inducing the identity map in M 

such that  q5 # o V = V' o ~#.  

Therefore, if ~ E AS(M) is a closed one-form, then each H.r(M ) and Ei(~) 

depends only on the class [~/] E Hi(M).  In particular, if ~/E A~(M) is a closed 

basic one-form, then each H.r(M ) and Ei(~/) depends only on the class [7] E 

H i (M) C H 1 (M), and we have 

(4.14) (E0('f), (d.y)0) -- (Eo, do), (El ('/), (d~)l) -~ (El, dl + ~fA). 

The following proposition is easily verified. 

PROPOSITION 4.15: Let "y E AI(M) be a closed one-form, and let V be the fiat 

connection on E = M x ]~ with connection form "y with respect to a. Assume that 

M has a finite number of connected components. Then the following conditions 

are equivalent: 

(i) (E, V) is trivial as a flat vector bundle; 

(ii) the class [~/] = 0 6 H i (M) ;  

(iii) E2~176 --~ E~176 , 
(iv) H~(M) ~ H(M); 

(v )  - for  a l l  i .  

Remark: Let 7 E AI(M) be a closed one-form. Then it is easy to check 

that E~176 ) -~ E~176 Assume now that  M is connected. Then we have 

E~176 ~ E ~176 = ]R or E~176 = 0. The first case occurs if and only if the 

class [~/] = 0 E H I(M). 

5. F in i t enes s  t h e o r e m  for trans i t ive  fol iat ions 

In this section we prove a finiteness theorem for the spectral sequence of the 

filtered complex A(M, E) considered in Section 4. For this purpose, we shall use 

the Riesz theory of compact operators [13, 25]. 

First, we consider the following more general case. Let (A, d) be a filtered 

(cochain) complex of Hausdorff locally convex topological vector spaces A r over 

the real field (or the complex field) and continuous linear maps d r with decreas- 

ing filtration FkA = (~r FkAr (stable under d) such that  A = ~rn_0 A r (with 

n integer), FbA C A are closed subspaces, F~ ~ -- A ~ and FkA ~ = 0 for 

k > r, where on A we consider the direct sum topology. Then, we have a spec- 

tral sequence (E~, d~) which converges to the cohomology H(A) of (A, d) after 

a finite number of steps. Each Ei, Eoo and H(A) with the induced topology 
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is a locally convex topological  vector  space and di is continuous. Moreover, E0 

is Hausdorff  and the canonical i somorphism E1 --+ H(Eo) = H(Eo, do) (resp. 

Ei+l --+ H(Ei)  -- H(Ei, di), i >_ 1) is a topological i somorphism (resp. is contin- 

uous). E1 in general  is not Hausdorff  obtaining two new topological complexes,  

the closure 0 of the  tr ivial  subspace of El ,  and E1 = E1/6 ,  so tha t  E1 is Haus-  

dorff  and we have the exact  sequence of topological complexes 0 -+ () ~ E l  Z+ 

E1 --~ 0. We will say tha t  E1 is the r e d u c t i o n  of E l ,  and let E2 = H(E1)  be  its 

cohomology. 

Definition 5.1: A pair  of continuous linear maps  s, h: A --+ A of degrees 0 and - 1  

respect ively will be called a 2 - p a r a m e t r i x  for A if 

(i) s is a compac t  operator ;  

(ii) s(FkA) C FkA  for all k; 

(iii) h(FkA) C F k - I A  for all k; 

(iv) 1 - s = d h + h d .  

LEMMA 5.2: Assume that there exists a 2-parametrix s, h for A. Then we have: 

(i) There  is a finite dimensional topological filtered subcomplex K C A with 

spectral sequence ( E~ ( K ) , di ) such that the induced linear maps E2(K)  -~ 

E2 and E~ (K) --+ F-e are topological isomorphisms. 

(ii) E2 and ]E2 are finite dimensional Hausdorff, and the canonical map ~-.: E2 --+ 

F_~ is a topological isomorphism, so that H(O) = O. 

(iii) Each Ei ~ Ei(K) ,  2 < i < 0% and H(A) ~ H(K)  is finite dimensional and 

the induced topology coincides with the Euclidean topology. In particular, 

the identities Ei+l - H(Ei) ,  0 <_ i < oo, are also topological. 

Proof." Since FkA C A is a closed subspace, s: A -~ A defines a compac t  

opera to r  s: FkA --+ FkA  for each k = 0 , . . . , n .  From [13, 25] it follows tha t  

1 - s: F k A  -+ FkA  has finite ascent and finite descent mk for all k = 0 . . . .  , n. 

Let  m be the  m a x i m u m  of the ink, 0 < k < n. Then  the kernel K = Ker(1 - s )  m 

and the  image I = (1 - s)'~(A) of (1 - s)m: A = F~  ~ A -- F~  are topo-  

logical filtered subcomplexes  of A with filtrations F k K  = Ker  ((1 - s)mlF~A) = 

K N F k A  and F k I  = (1 - s)m(FkA). Furthermore,  A = K | I as a topological  

filtered complex  with FkA = F k K  | F k I  (as a topological complex),  K is finite 

dimensional ,  F k K  and F k I  are stable under s, (1 - s) m = 0: F k K  --+ F k K ,  and 

1 - s: F k I  -+ F k I  is a topological  i somorphism for each k -- 0 , . . . ,  n. 

Now, let Ei(K)  and Ei(I) be the spectral  sequences of K and I respectively. 

I t  is clear tha t  E i ( K ) ,  0 < i < 0% and H(K)  are finite dimensional  Hausdorff.  

Then  

E1 -~ E1 (K)  G E1 (I) ,  E1 ~ E1 (K)  $ ]~1 ( I )  
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as topological  complexes,  where E l ( I )  = EI(I) /O.  Consider the canonical  pro- 

ject ion ~ri = ((1 - s)'~li) -1 o (1 - s)m: A --+ I. So we obta in  a 2 -pa ramet r ix  

sli,Tr I o (hl~): I --+ I for I .  Since 1 - sly I --+ I is a topological i somorphism,  we 

have E2(I) = N2 (I )  = 0, where N2 (I)  = H(E1 (I)) .  This  implies t ha t  

E 2 ( K )  --- E2 (K)  G E 2 ( / )  = E2, E2(K)  ~- E2(K)  @F-,2(I) ~ E2 

as topological  complexes.  The  desired result follows. 1 

THEOREM 5.3: Let  jc  be a transitive foliation on a compact manifold M, and let 

V be a flat connection on a smooth vector bundle E over M. Then the spectral 

sequence (Ei (V), ( d v ) d  of  the filtered complex (A(M, E), d r )  satisfies: 

(i) There  exists a finite dimensional topological filtered subcomplex 

K C A(M, E) with spect ra l  sequence Ei(K) such that the induced l inear 

m a p s  E2(K) -~ E2(V) and E2(K)  -+ F-a(V) are topological isomorphisms, 

where E2 (V) = H(llgl (V)) and E1 (~) -~ El (V) /0 .  
(ii) E2(V)  and F_e(V) are finite dimensional Hausdorff, and E2(V) ~- E2(V) 

canonically and topologically, so that H(O) = O. 

(iii) Each Ei (V)  -- Ei(K), 2 < i <_ oo, and H ( M , E )  ~ H(K)  is finite 

dimensional and its topology is the Euclidean topology. The identities 

E i + I ( V )  = H(Ei(V)) ,  0 _< i < oo, are also topological. 

Proof: Consider the 2-paramet r ix  s, h for A(M, E) constructed in Theo rem 3.2 

and apply  L e m m a  5.2. | 

From Theo rem 5.3 (also, by Theorem 3.5 and L e m m a  5.2) we obta in  the 

following result. 

THEOREM 5.4: Let 3 c be a transitive foliation on a compact manifold M, and 

let 7 E AI(M) be a closed one-form. Then the spectral sequence (Ei(7) ,  (d-y)i) 

of  the filtered complex (A(M), dr) = (A(M, M x R), d r )  satisfies the properties 

(i), (ii) and (iii) of  Theorem 5.3, where d r = d + 7A. 

Remark :  For "y = 0, the results obta ined above are reduced to the  ordinary case 

of [27] and [19, Section 1]. 

From Theorems  5.3 and 5.4 we have for T~" = T M  (also, for T9 r = 0) the  

following result. 

COROLLARY 5.5: Let E be a flat vector bundle over a compact manifold M. 

Then there  exists a finite dimensional topological subcomplex K C A(M, E) 

such tha t  H(K)  ~- H(M,  E) topologically. In particular, for each closed one- 

form ~, E A 1 (M) ,  there is a finite dimensional topological subcomplex (K, d.~) of 
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(A(M),d.~) such that H(K,d~) ~ HT(M) topologically. Clearly, H(M,E)  and 

H~ (M) are tlnite dimensional Hausdorff. 

6. E x a m p l e s  

In this section we compute some examples of homogeneous Lie foliations on 

compact connected homogeneous spaces. 

Let Y be a smooth foliation of codimension q on a smooth manifold M, and 

let 7r: T M  ~ v Y  = T M / T . T  be the canonical projection. Then each X E 

:~(M) determines a smooth section X = 7r(X) E Fv~'. On says that ~" is 

t r a n s v e r s a l l y  para l le l izab le  if there exist elements X 1 , . . . , X q  E X(M, 9 v) 

such that f(1, . . . , -~q E X(M, Y)/Y.(Y) -= A~ uY) are linearly independent at 

each point of M. The set P = {){1, . . . ,  )(q} is called a t r a n s v e r s e  pa ra l l e l i sm 

of 9 v. If the q-dimensional vector space generated by P is a Lie subalgebra g 

of the Lie algebra X(M, Y)/X(Y),  then Y is called a Lie 9-foliat ion,  and 7) is 

called a t r a n s v e r s e  Lie para l le l i sm of 9 z-. It is clear that every transversally 

parallelizable foliation is transitive. Similarly, every foliation defined by the fibers 

of a locally trivial fibration is transitive. Note also that the canonical lift of a 

Riemannian foliation to the bundle of its orthonormal transverse frames is a 

transversally parallelizable foliation (see [21, 22]). 

Now, let Y be a transversally parallelizable foliation of codimension q on M, 

and consider a transverse parallelism 7 ) = {) (1 , . . . ,  )(q } of ~ .  Then 7) determines 

an Y-basic connection V = V p on uY given by 
q q 

(6.1) v x 2  = . [ x j : , z ]  + z] = +  Ix, z] 
i=1 i=1 

for X, Z E if(M), where Xi E X(M,~-) represents ){/, and X~- E if(Y) and 

fi E A~ i = 1, . . .  ,q, are given by X = X.r + ~iq=l f iXi.  It is easy to see 

that V depends only on the q-dimensional vector space V generated by 7 9, and 

that V is fiat if Y is a Lie g-foliation, where ~I = V. Conversely, if M is connected 

and V is fiat, then ~" is a Lie g-foliation. Moreover, if M is connected, then ~" is 

a Lie ~t-foliation with dense leaves if and only if V is independent of the choice 

of 7 9. In this case the canonical flat connection V is completely characterized by 

the formula 

(6.2) V x 2 = T r [ X , Z ]  f o r X E X ( M , Y ) ,  Z E i ~ ( M ) .  

Next, let ~- be a Lie g-foliation on M, and consider a transverse Lie parallelism 

P = {)[1 , . . . , ){q} of Y, where Xi E X(M,Y)  represents ~-i, i = 1 , . . .  ,q. Sup- 

pose that  the q0-dimensional vector space generated by ){1 , . . . ,  fcqo, 0 <_ qo < q, 
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is an ideal [J of g. Then T~" and X : , . . . ,  Xq0 define a Lie g/b-foliation W~ of 

codimension q - q0 on M with ~" C ~'~, and the flat connection V -- Vg on vY 

of ~- induces a flat connection V ~ on the 5r-foliated normal bundle 

(6.3) Q~ = T.T~/T.~ C v.T" of j r  in ~'b 

given by 
q 

(6.4) 2 = z] + z]  
i ~ l  

for X �9 ~(M),  Z �9 :~(~-b), where r~: TU~ -+ Qb is the canonical projection, 

and X~= and fi are given as above. Clearly, the flat connection V ~/~ on u f  b of 

5r~ is also induced by V, and the canonical projection u~" --+ uSr~ is compatible 

with V and V ~/~. 

On the other hand, let ~" be a transitive foliation on a compact connected 

manifold M. Then P. Molino has proved in [20, 22] that  the closures of the 

leaves of 9 v are the fibers of a locally trivial fibration rb: M -+ W, called the 

basic  f ibra t ion ,  and the restriction of 5 r to each fiber of Irb is a Lie 9-foliation 

with dense leaves, where g is an algebraic invariante of U, called the s t r u c t u r a l  

Lie a lgebra.  Consider now the basic foliation Ub defined by 7rb, whose leaves 

are the closures of the leaves of ~v, so that j r  C 9rb. Then an easy computation 

shows that  the U-foliated normal bundle 

(6.5) C(J r) = T:Fb/T.T C v.T of ~" in -~b 

of dimension q0 -- dimg is flat, whose canonical flat connection V -- V c is 

completely characterized by the formula 

(6.6) V x Z  = lr0[X, Z] for X e 3E(M,.T'),Z e ~(gVb), 2 = lr0(Z) e FC(~), 

where 7r0: T~b --+ C(~') is the canonical projection. The Molino commuting sheaf 

(or central transverse sheaf) of ~" (cf. [20, 22]) is the sheaf of germs of parallel 

sections of the flat vector bundle C(.T'), and if ~" is transversally parallelizable, 

then V is induced by the connection on v~" given by (6.1). 

A method to construct examples of Lie foliations is the following. Let G and 

G1 be two simply connected Lie groups, and let D: G: ~ G be a surjective 

homomorphism of Lie groups. Suppose that  G: contains a discrete uniform 

subgroup F:.  Then the foliation ~ on G1 by the fibers of D, which is also defined 

by Ker D, is invariant by left translations by the elements of F1. Hence, .~ induces 

a foliation 3 r on the compact connected homogeneous space M = F I \ G :  such that  
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fi" = ~ '3  v, where r:  G1 --+ M is the universal covering of M. Clearly, ~- is a Lie 

g-foliation and D is the developing map of 9 v, h = D Ir~ : F1 --+ G is the holonomy 

representation and F = h(F1) C G is the holonomy group of 2-, where 9 is the Lie 

algebra of G. Now, let K be the closure of F in G, and consider the homogeneous 

space W = K \ G .  Then the canonical projection ~b: M = FI\G1 ~ W = K \ G  

induced by D is the basic fibration of ~" and the Lie algebra of the Lie group K 

is its structural Lie algebra. Such a Lie 9-foliation is called h o m o g e n e o u s .  

Now, we apply the preceding results to compute the following example of 

homogeneous Lie foliations. 

Example 1: Let A be the matrix in SL(4,Z) given by 

, so that A t = for all t �9 IR, 

where I is the 2 x 2 identity matrix. Let GA = I~•162 4 be the semidirect product 

of the additive Lie groups if( and ~4 via the representation r R -+ SL(4, IR) 

defined by r = At; that is, GA = (R 5, ") with the group operation given by 

(t ,  Xl ,X2,X3,T,4)  ' (tt,  Xl,' X 2',;T~,x~) 
t I J t I 

=(t  + t', (Xl ,Z2,X3,X,1)  ~- A ( Z I , Z 2 , X 3 , X 4 ) )  

=(t  + t', xl + x2 + 4 ,  x3 + t 'l, + + 

So we have constructed a simply connected nilpotent Lie group GA of dimension 

5, which is not abelian. It is easy to check that FA = (Z 5, .) C GA is a discrete 

uniform and torsion-free subgroup, and that the canonical projection 7r: GA -~ 

FA\GA is the universal covering of the compact connected homogeneous space 

M = FA\GA of dimension 5. Moreover, M is the quotient manifold R • T t 

of ll~ x T 4 by the equivalence relation given by (t, x) ~ (t + 1, A(x)) ,  t �9 R, 

x �9 T 4, where A also denotes the automorphism of T ~ induced by A. Note that 

~s: ]R • T ~ -§ S 1 is a fiat bundle with fiber T j, whose monodromy is given by 

A, where 7rs is induced by the canonical projection of ll~ • 31 ~ onto R. 

Now, let o~ �9 R be a real number, and consider the orthogonal basis of tile 

Euclidean space R 4 -= (R a, (,)) given by 

v 1 = ( - 0 ~ , 1 , 0 , 0 ) ,  v2 --- (0, 0, -0~,1), v 3 = ( 1 , a ,  0,0), v4=(0 ,0 ,1 , (~) ,  

which satisfies the identities 

At(v1) = Vl + tv2, At(v2) = v2, At(v3) = v3 + tv4, At(v4) = v4 for all t �9 I1~. 
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Then a basis of left invariant vector fields on GA is given by 

Xo:~,  xi = - ~ + b - - ~  +t ~ ) - ~ x 3  + b--~ ' x~=-~b-~z + - -  
o o / o  o ,  o o 

X3 -~-~Xl -4- O l - -  "+-t ~ ) - { -  X4 = -}- 

0 

C~X4 

where X~ is induced by vi, i = 1, 2, 3, 4. For each i = 0, 1, 2, 3, 4, X~ defines a vec- 

tor field, also denoted Xi, on M = FA\GA = R • Z 31"4, and X0, X1, X2, X3, X4 C 

:~(M) is a parallelism on M satisfying 

(6.7) IX0, X1] = X2, [X0, X3] : X4, 
[Xi, Xj] = 0 otherwise. 

The dual basis wo, wl, w2, w3,0)4 E A 1 (M) of Xo, X1, X2, X3, X4 is given by 

wo = dt, 0)1 --= c(-o~dxl -4- dx2), w2 = c ( - t ( - a d x l  + dx2) - adx3 + dx4), 
0)3 = c(dXl + adx2), w4 = c(-t(dxl  + adx2) + dx3 + adx4), 

where c = 1/(1 + a2). Hence we have 

(6.8) dw2 : --0)0 A ~01, d0)4 -~ -0)0 A 023, 4020 = 4o21 = dw3 = 0. 

Similarly, by (6.7) it follows that  X3,X4 (resp. X1,X2) define a homogeneous 

Lie foliation $- (resp. $-1) of dimension 2 on M. Consider for example 9 v, since 

the same techniques can be used for $-1. Then X0, X1, X2 define a transverse Lie 

parallelism of 2-. Let G = (R 3 , .) be the Heisenberg group of dimension 3, whose 

group operation is given by 

(t ,x ,v) .  (t ' ,x' ,r = (t + t ' , ~  + ~',y + y' +t~').  

Then the surjective homomorphism of Lie groups D: GA -+ G given by 

(6.9) D(t, Xl, x2, X3, X4) : (t,  --OlX 1 -~- X2, --~X 3 "4- X4) 

is the developing map of $-. Therefore, ~" is a homogeneous Lie 0-foliation, 

F = D(FA) C G is its holonomy group and the induced map 7rb: M ~ W = 

K \ G  is its basic fibration, where 0 is the Lie algebra of G, which is defined by 

)f0,X1,X2, and K = F C G denotes the closure of F in G. Clearly, X1,X2 

generate an ideal I~ of dimension 2 of g. Then T$- and X1,X2 define a Lie ~/[~- 

foliation $-~ of dimension 4 on M with ~- C $-~. It follows that  $-~ is defined 

by X1,X2, X3,X4, and its leaves are the fibers of 7rs: M = R • T~ -~ S 1. 

Furthermore, X1,X2 C FQ~ is a basis of sections for Q~ = T$-~/T$- and the 
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connection form (Oij) of the flat connection ~7 _- ~7~ on QO with respect to 

X1, X2 is given by 

(6.10) 011 : 012 -~ 022 --  0, 021 : aJ 0 E A I ( ~  1) C AI(M). 

Consider now the spectral sequence (E/, di) (resp. (Ei(V), (dr) i ) )  associated to 

j r  (resp. to j r  and Qo). Then by (6.10) we have 

(6.11) Ei(V) = E~ @ Ei for i = 0, 1. 

On the other hand, suppose that a E Q is a rational number, so that  a = 

ao/a with ao,a E Z, a > 0 and ao,a relatively prime. Then F C G is closed, 

K = F, ~rb: M ~ F \ G  is the basic fibration of jr,  and the leaves of Jr are 

the fibers of ~rb, which are diffeomorphic to T 2. Now, to compute 7rb, consider 

the automorphism of Lie groups r G -~ G defined by r x, y) = (t, ax, ay), 
which satisfies r -- (Z 3, .) C G. Then we have the induced diffeomorphism 

F \ G  -~ (Z 3, . ) \G = ~ Xz T 2, where IR Xz T 2 is the compact Heisenberg manifold 

of dimension 3; that is, the quotient manifold of R x T 2 by the equivalence 

relation given by (t, x, y) ,.~ (t + 1, x, y + x). Evidently, the canonical projection 

]~ xz  T 2 --~ S 1 is a flat bundle with fiber T 2. Denote also by D: GA --~ G the 

developing map of j r  given by the composition of D with r which is defined by 

(6.12) D(t, Xl, X2, X3, X4) = ($, --aOXl q- ax2, --aox3 -~ ax4). 

It follows that the induced map 

(6.13) Irb: M = R  x z T  ~ - -~  W - -  R x z T  2 

is the basic fibration of ~'. 

Finally, suppose that  a E R - Q  is an irrational number. Then K = ( Z x ~  2 , .) C 

G, K \ G  = S 1 , ~rb = zrs: M = R Xz T ~ --+ W = S 1 is the basic fibration of Jr, the 

leaves of ~" are diffeomorphic to R 2, Jrb = Jr~ is the basic foliation, and C (jr) = Q~ 

is the Molino commuting sheaf of jr.  Now, to compute Ei and Ei(V),  we need 

to use the following. 

Definition 6.14: Let a E R - Q be an irrational number, and consider the vector 

v = (1,a)  in the Euclidean space R 2 = (R s, (,)). One says that  a satisfies a 

D i o p h a n t i n e  c o n d i t i o n  if there exist positive constants C and 5 such that  

(6.15) [(m, v>l >_ C~ []mll ~ for all m e Z 2 - {0}, 



Vol. 107, 1998 

so tha t  

(6.16) 

A FINITENESS THEOREM FOR FOLIATIONS 273 

I<m, v3>l~C/llmll ~ for all m 6 Z 2 x { 0 } -  {0}, 
I<m,v~)l~C/ll~ll  ~ for all m 6 Z2 x (Z2 - {0}). 

Otherwise,  c~ is called a L i o u v i l l e  n u m b e r .  Hence, if a is a Liouville number,  

then  there  exists a sequence {ms}ski  of elements of Z 2 • {0} - {0} such tha t  

o < t (~, ,va>l  < 1 / l i m a  8 for all s = 1 , 2 , . . . ,  
(6.17) 

m s , m s ,  and m ~ r  i f s C s ' .  

Then  we have the following result. 

THEOREM 6.18: Let the situation be as above. Then we have: 

(i) I f  a E Q, then 

E~ 'v = AU(wo,wl ,w2)  | AV(w3,w4) | A~ R •  ,]~2), 

with the C~176 topology, for 0 < u < 3, 0 < v < 2. 

(ii) I f  a E I~ - Q satisfies a Diophantine condition, then 

EI~ ,v = . .  (o~0, ~1, ~ )  | A v ( ~ ,  ~4) | n ~ (s  1 ), 

with the C~176 topology, for 0 < u < 3, 0 < v < 2. 

(iii) I f  a 6 I~ - Q is a Liouville number, then E1 = 0 ~ E1 as topological 

complexes, Ei  '~ = El '~ E1 'v is not Hausdorff and 0 "'~ is infinite dimensional 

for each v = 1, 2, and 

E~ 'v : AU(wo, wl ,  W2) | AV (w3, w4) ~ A~ 

with the C~ topology, for 0 < u < 3, 0 < v < 2. 

(iv) For  any a 6 I~, the spectral sequence Ei collapses at the second term, and 

E2 = H ( M )  is given by 

E 0,0 : E 3,0 - Eo, 1 = E 3,1 .~_ Eo, 2 - E32 ,2 : ~ ,  

E~,o _____ E22,0 = E1,2 = E2,2 = ~2,  E21,1 _ E2,1 = ~3 .  

(v) For  any  a 6 R, the spectral sequence Ei(V)  collapses at the second term, 

and E2(V)  = H ( M ,  q~) is given by 

E~176 E~'~ ~~ E~'~(V)= R, E~ E~'~(V)= R ~, 
EI,0(V) = E22,0(V)__ E~,2(V)___ E22,2(V)= R3, E~,I(V)_._ E22,1(V)__ Rs. 
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Proo~ First, we bigrade A(M) by setting 

A~"(M) = L~ '~ = A~(wo,Wl,w2) | |176 0 < u < 3,0 < v < 2. 

It follows from (6.8) that dy=wi = 0, i = 0,1,2,3,4.  Then we have E~ '" = 

hU(cOO,Wl,W2) | E~ 'v. Clearly, E ~176 = A~ xz  ~IF 2) if ct E Q, and E 0'~ = A~ 1) 

if a E R -  Q. Therefore, to prove (i), (ii) and (iii) it suffices to compute E1 ~ and 

E~ that  is, we need to compute the maps 

AO(M) 2G Ao,I(M) _- (a)3,~4) ~ AO(M) d~) Ao,2(M) = (w3 A co4) | A~ 

Note that  the elements f E A~ are the smooth functions f :  R x T 4 -~ ~ such 

that  

(6.19) f ( t  + l,A(x)) = f(t,x), t E ~, x E T 4. 

For each m = (ml,m2,rn3,m4) E Z 4, denote by em the smooth function era: 

T 4 -+ C given by era(x) = e 2~(m'~>. Then, for each t E ]R, the Fourier series 

expansion of f E A~ is given by 

(6.20) f = Sm(t)em, 
mEZ 4 

where fro: ]~ --+ C is a smooth function for all m 6 Z 4. It is easy to see that 

formula (6.19) is equivalent to the formula 

(6.21) f,~(t+l)=fA,(m>(t), m E Z  4, t61~,  

where A' is the transpose matrix of A. In particular, we have fm(t + 1) = fm(t) 
for all m 6 Z 2 • {0} and t E R, so that 

fm: ~1 ) C is a smooth function for all m 6 Z 2 • {0}, and f0 E A~ 

(6.22) 
It is clear that  dTf = X3(f)w3 + X4(f)w4 E A~ and that 

X3(f)  = 21ri Emez , ( ( rn ,  v3> + t(m, V4>)fm(t)em E AO(M), 
(6.23) 

X4(f)  : 2ri  ~m~z t (m,  v4>fm(t)em 6 A~ 

Similarly, for ~ = gw3 + hw4 E A~ with g,h E A~ we have d~:~ = 

(X3(h) - X4(g))w3 A w4 E A~ and 

(6.24) X3(h) - X4(g) = 2r i  E (((rn, v3> + t(m, v4>)hm(t) - (m, v4>gm(t)) era, 
m6Z 4 
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where gin(t) and h,~(t) are the corresponding Fourier coefficients of g and h. 

Hence, ~ E Ker d~: N A ~ (M) if and only if 

(6.25) <m, v4}gm(t)=(<m, v3)+t<m, v4>)hm(t), m E Z  4, t E R ,  

so that  h,~ = 0 if (m, v3} # 0 and (m, v4) = 0. 

To prove (i), suppose that  a E Q, so that a = ao/a with ao,a E Z, a > 0 and 

ao, a relatively prime. Consider the set 

•2 _~ {m E Z 4 I <m, 723} = <?7-t, v4} = 0}. 

Evidently, Z 2 C Z 4 is an additive subgroup and the map 

Z 2 ~> Z 2 given by (m, ,m2) ,  > (-aoml,aml,-aom2,am2) 

is an isomorphism of additive groups. Then, for f E A~ it follows from 

(6.12) and (6.13) that  

f E E ~176 = A~ • ~22) ~_~ AO(M) ~ f = E fm(t)e,~; 
m E Z  2 

that is, fm= 0 for all m E Z 4 - Z 2. 
0,1 Now, to compute E 1 , let ~ E Kerdj=MA~ be as above. For each m E Z 4, 

consider the smooth function fro: ]~ -+ C given by 

(27ri{m, v3>)-lgm(t) if{re, v3} # O a n d  (m, v4} =0, 
(6.26) fro(t) = (27ri{m, v4})-1hm(t) if {m, v4} # 0, 

0 if (m, v3) = <m, v4) = O. 

It is clear that  f,~(t + 1) = fA,(m)(t) for all m E E a and t E R. Let 

C = m i n (  min I(m, v3>l, min I(m, v4>l~>O. 
\(m,v3)r (re,v4)#0 / 

Then, for any nonnegative integers r, s, it follows from (6.26) that 

II' llr dts <-- 
m E Z  4 

Since g and h are smooth functions, the series on the right converge uniformly 

on any compact subset of IR, so that  the series on ~he left satisfies this property. 
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Therefore, the fro(t) are the Fourier coefficients of a smooth real valued function 

f on M. It follows from (6.23), (6.25) and (6.26) that 

= dFf + (~w3 + hw4) w i t h ~ =  E gm(t)em, h= E hm(t)em. 

Clearly, ~, h E A~ • T2). Thus we have 

Ker d~- D A~ = dT(A~ G (w3,w4) | A~ • "11"2) 

with the C~ topology, so that 

EO,1 1 -~- (0)3'034) | A~ R • T 2) 

with the C~-Fr6chet topology. 

On the other hand, to compute E ~ consider an element r = f033 A 034 C 
A~ and let f,~(t) be the Fourier coefficients of f E A~ Then we 
have an element ~ = g0)3 + h034 E A~ such that the corresponding Fourier 

coefficients gin(t) and hm(t) of g, h E A~ are given by 

{ -(27ri<m, v4>)-1fm(t) if <m, v4) ~ 0 ,  
gm (t) = 0 otherwise; 

(6.27) { (2ri<m, va>)-'fm(t) if <m, v3) # 0 and <re, v4) = O, 
hm(t )  = 0 o t h e r w i s e .  

It follows from (6.24) and (6.27) that 

r = d~-~ + ]0)3 A 0)4 with jZ = E fm(t)em E A~ • "11"2). 
meZ~ 

Therefore we have 

A~ = d~(A~ 6) (w3 A w4) | A~ xz T 2) 

with the $'~-Fr6chet topology, so that 

E10'2 = (w3 A w4) | A~ • ~,2) 

with the .T~-Fr6chet topology. This completes the proof of part (i). 

Next, suppose that a E R - Q. Then, for any m E Z 4, we have the following 

relations: 

<m, v 3 ) # O a n d ( m ,  v 4 ) = O <  : ~ m e Z  2 •  
(6.28) <m, v4> # 0 . = .  m e z 2 • (g2 _ {0}) ,  

(re ,  v3)  = (re ,  v4)  = o ~ m = o. 
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To prove (ii), assume that  a E R - Q satisfies a Diophantine condition. Let 

p E Ker d~= n A ~ (M) be as above. Then, for each m E Z 4, consider the smooth 

function f,~: N -+ C given by (6.26). Now, for any nonnegative integers r, s, it 

follows from (6.16) and (6.26) that 

m E Z  4 

meZ x{o}-{o} m~Z2x(z2-{0}) dts ] ' 

where C = (2~C) -1 > 0. Hence, the fro(t) are the Fourier coefficients of a 

smooth real valued function f on M such that  

p = dj: f  + (g0w3 + how4) with go, h0 �9 A~ 

This implies that  

K e r g y  n A~ = dj:(A~ @ (~3,~4) | A~ 1) 

with the C~176 topology, so that 

E ~ = (w3,w4) | d~ 1) 

with the C~ topology. Similarly, using (6.16) and (6.27) we obtain 

A~ -- dy(A~  @ (w3 A oJ4) | A~ 1) 

with the C~176 topology. Thus 

E ~ = (w3 A w4) | A~ 1) 

with the C~176 topology. This proves (ii). 

To prove (iii), suppose that  R - Q is a Liouville number. Then we have 

(6.29) Ker d~= N A~ = D~ @ (w3,~4) | A~ 1) 

with the C~ topology, where D~ is the closed subspace of 

Ker dy  N A ~ (M) given by 

D~ ( M) = { p = gw3 + hw4 �9 Ker d~= n A~ ( M) ] go = ho = 0}. 

It is clear that  dy(A~ C D~ Now, to prove that  dy(A~ -- 

D~ consider an element ~o = gw3 + hw4 �9 D~ and let gin(t) and 
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hm(t) be the corresponding Fourier coefficients of g, h 6 A~ Let {fk}k>_a be 

the sequence of elements of A ~ (M) given by 

fk = E gm(t) h,~(t) 
2~<,~, v3> ~m + ~2  2~i<~, v4> ~m 

~z 2 x(O}-(o} ~cz~x(z 2-{o}) 
Ilmll_<k pl(m3,ma)ll_<k 

Then we have a sequence {d~fk}k_>l of elements of d~:(A~ which converges 

to ~o, so that  dj:(A~ = D~ Now, using (6.29) we obtain the topological 

identities 

0,1 00,1 = O0,1 N,0,1 E~ = 0~ @ E1 , (M)/d~(A~ ), ~ 1  ~- (Cd3'~)4) @ A~ 

To prove that 0 ~ is infinite dimensional, consider a sequence {ms}s>_1 of 

elements of Z 2 x {0} - {0} satisfying the conditions (6.17). For each A E [0, oe) C 

R, let qoa = gaw3 + haw4 ~ D 0'l(M) be the element such that  hA = 0 and the 

Fourier coefficients (ga),~ E I1~ of ga E A~ are given by 

{ Ilmsll -s/2 s a i f  m = ms or if m = - m s ,  

(6.30) (ga)m = 0 otherwise. 

To show that the set {{~oa]}ae[o,oo) C 0 ~ is linearly independent, consider a 

linear combination 

~ a j  [~a~] = 0, a sce ,  0 < a l  < . . . < ~ < o ~ .  
j = l  

Then there exists an element f E A~ such that 

r 

(6.31) d.rf = E aj~aj. 
j = l  

Let fm be the Fourier coefficients of f .  It follows from (6.23), (6.30) and (6.31) 

that 
?- 

/m~ = (2~i(ms,vs}) -~ I l m ~ l l - s / 2 ~ a 9  ~, s = 1 , 2 , . . . .  

j = l  

Then by (6.17) we have 

j = l  j-~l 

for all s _> 1. Now, since 

lim I/rn~l = 0 and lim IImsll s/2 = oo, 
8 - ' 4 0 0  8-'-'~ O O  
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/ .  

,ira I ojs 'l--o. 
,5 - ~ ' 0 0  

j = l  

Therefore, using the relation 0 _ ,~1 < ""  < ,~r < 00, we obtain aj = 0 for all 

j = 1 , . . . ,  r. This proves that 0 ~ is infinite dimensional. 

To compute E7 '2, consider the topological identity 

A 0'2 = D~ ~ (w 3 A w4) | A~ 

where D~ is the closed subspace of A~ given by 

D~ = {r = fw3 Aw4 �9 A~ I fo = 0}. 

Evidently, d~:(A ~ C D~ Let ~b = fw3/koJ4 E D~ be an element, 

and let fro(t) be the Fourier coefficients of f E A~ Then we obtain a 

sequence {dJ:wk)k>l of elements of d~:(A~ which converges to ~b, where 

~ok = gkw3 + hkw4 E A~ with k >_ 1, and gk, hk E A~  are given by 

g~ : _ ~ f, , ,(t)  f , , ,(t)  
2~(m, v4) er,, hk = ~ . er~. 2re(m, v3) 

�9 . , e z  2 • ( z  2 - ( o } )  ~ e z  ~ x , {o}  - { o  } 
II(m3,m4)ll_ <k Ilmll<k 

This shows that  dm(A~ = D~ 

identities 

Hence we have the topological 

Eo,2 0o,2  ~ ~.o,~ 0o ,2  o,2 1 = eo~l , = D~176 E1 = (w3/Xw4)|176 �9 

To prove that  0 0'2 is infinite dimensional, consider the subset {[r of 

0 ~ such that  r = f~co3 Awa C D~ ), >_ 0, and f~ C A~  is the smooth 

function, whose Fourier coefficients (f~)m are given by (6.30). Now, suppose that  

j = l  

where ~o = gw3 + hw4 E A~ with g,h G A~ Then for each s = 1 ,2 , . . . ,  
the Fourier coefficient h,~, of h is given by 

T 

hm~ = (2~i(m~, v~))-' IIm~ll -~/2 ~ aj'~. 
j = l  

It follows that  aj = 0 for all j : 1 , . . . ,  r. This shows that  the set {[r C 

0 0'2 is linearly independent. Thus 0 ~ is infinite dimensional. Hence, part (iii) 

is completely proved. 
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Finally, parts (iv) and (v) follow immediatly from parts (i), (ii) and (iii), and 

Theorems 5.3 and 5.4. This completes the proof of the theorem. | 

For each t E R, let 5rt (resp..Tl,t) be the Lie R2-foliation of dimension 2 induced 

by ~- (resp. by $-1) on the fiber ~t = 7rsl(Trs(t)) of ~'s: M = l~ Xz T i ~ S 1, 
which is canonically globally isomorphic to the ll~2-foliation on T ~ defined by v3, v4 

(resp. by vl,v2). Consider for example ~t,  since the same argument applies to 
-Tl,t. Clearly, if a E Q, then the leaves of $'t are the fibers of the basic fibration 

(~rb)t: ~t ------- Ti --4 T2 - T2 with fiber ~,2. Similarly, if a C IR - Q, then the leaves 

of -Tt are dense in ~t.  Then, using the proof of Theorem 6.18, we obtain the 

following result. 

PROPOSITION 6.32: For each t E R, the spectral sequence (Ei, di) associated to 

~t  satisfies the following properties: 

(i) I f  a C Q, then E• 'v = AU(wl,w2) | AV(w3,w4) | A~ with the 

C~-Fr~chet topology, for 0 < u < 2, 0 < v < 2. 

(ii) I f  a E ]~ - Q satisfies a Diophantine condition, then E~"  = E ~ "  = 

A~(wl,w2) | AV(w3,w4), with the C~-k-~dchet topology, for 0 < u < 2, 

0 < v < 2 .  

(iii) I f  a E ~ - Q is a Liouville number, then E1 = 0 @ E1 as topological 

complexes, Ei '~ = Ei '~ Ei  '~ is not Hausdorff and 0 ",~ is infinite dimensional 

for each v = 1, 2, and E~'" = E~ 'v = AU(wl, ~2) |  wa), with the C ~ 

Fr~chet topology, for 0 < u < 2, 0 < v < 2. 

(iv) For any a E R, the spectral sequence Ei collapses at the second term, 

and E2 - =  H(T  4) is given by E~'" = AU(Wl,W2) | AV(w3,w4) ~ R u+v for 

0 < u < 2 , 0 < v < 2 .  

Example 2: Let A be the matrix in SL(4, Z) given by 

( A l l 0 )  w h e r e A l = (  1 0 ) and A2 = ( al a3 ) 
A = 0 A~ ' 1 1 ' a2 a4 

is a matrix in SL(2, Z) such that tr(A2) > 2. Then a2a3 ~ 0 and A2 has two 

positive irrational real eigenvalues A and A -1. Let a = (A - al)/a3 E R - Q, so 

that ( - (a3/a2)a ,  1), (1, a) is a basis of I~ 2 consisting of eigenvectors associated 

to A -1 and A respectively. It follows that A~ E SL(2,1t~) for all t E R. Therefore 

we have 

10 ) (10) 
A t i SL(4, II~) wi thAi  t 1 = A2 E = for all t E R. 
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Now, let GA ~- ~ xr ~4 be the semidirect product of the additive Lie groups 

]R and IRa via the representation r R --+ SL(4,li 0 defined by r = At; that  is, 

GA = (R 5, ") with the group operation given by 

( t ,  X l , X 2 , X 3 , X 4  ) t t t t t �9 ( t ,  Zl,  z2, zz ,  z4) 

=(t  + t', (Xl,X2,X3,X4) + dt(x~,x~,x~,z'4)) 
I I I t I ! 

=(t  + t', Xl + x 1, x2 -4- X 2 + txl ,  (x3, x4) -4- A2(x3, x4) ) . 

So we have constructed a simply connected solvable Lie group GA of dimen- 

sion 5, which is not nilpotent. Clearly, FA = (Z 5, .) C GA is a discrete uni- 

form and torsion-free subgroup, and the compact connected homogeneous space 

M = FA\GA of dimension 5 is the quotient manifold R • q~4 of • • ~ by 

the equivalence relation given by (t, x) ,-~ (t + 1, n(x)),  t E 1~, x E 7~ 4, where 

A also denotes the automorphism of T 4 induced by A. Moreover, the canonical 

projection 7rs: M = R • qF4 ~ S z is a flat bundle with fiber qF 4. 

On the other hand, consider the basis of the Euclidean space ]R 4 _=_ (~4, (,)) 

given by 

vz = (O,O,-(a3/a2)(~,l), v2 = (1,0,0,0), v3 = (0,1,0,0), v4 = (0,0,1,a),  

which satisfies the identities 

At(v1) = A - t ' o l ,  At(v2)  -- v2 + t~)3, At(v3) = v3, At(v4) -- Atv4 for all t G IlL 

Note that  -(a3/a2)&,a G R -  Q are algebraic numbers over Q, so that  they 

satisfy Diophantine conditions�9 Hence, there exist positive constants C and 5 

such that  

(6.33) I(m, Vl)l > C~ llmll ~ , I(m, v4)l >__ c~ Ilmll for all m �9 Z 2 • (Z 2 - {0}). 

Now, consider the basis of left invariant vector fields on GA given by 

0 ~ - t ( - ( a 3 / a 2 ) a s  0~4)  Xo =-~,  X1 = + , 

X2 =~Xl + t , X3 = ox'2, X4 = + a , 

where Xi is induced by vi, i = 1,2,3,4. For each i = 0,1,2,3,4,  Xi 

defines a vector field, also denoted Xi, on M = FA\GA = R • ql~, and 

X o , X 1 , X 2 , X 3 , X 4  �9 ~ (M)  is a parallelism on M satisfying 

(6.34) [Xo, Xl] = ( -  log )~)Xl, [Xo, X21 --~ X3, [Xo, X4] = (log)t)X4, 
[Xi, Xj] = 0 otherwise. 
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Then the dual basis 020, wl, w2, w3,024 E A 1 (M) of Xo, X1, X2, X3, X4 is given by 

020 = dt, 021 = c/~t(-ctdx3 -~- dx4),  022 = dXl, 
w3 = - t d x l  + dx2, 024 = c)~-t(dx3 + (a3/a2)adx4), 

where c = 1/(1 + (aa/a2)a2). Therefore we have 

(6.35) do21 = (log~)w0 A col, d023 = -020 A 022, 
d024 = ( -  log A)co0 A 024, dwo = dw~ = O. 

Evidently, the elements f E A ~  are the smooth functions f:  Ii~ x ~ ~ R, 

whose Fourier coefficients f,~: It~ ~ C, rn E Z 4, satisfy 

(6.36) f m ( t + l ) = f A , ( m ) ( t ) ,  m E Z  4, t E ~ ,  

where A' is the transpose matrix of A. In particular, we have fm( t  + 1) = fro(t) 

for all rn E Z x {0} and t E N. Hence, f,~: S; --+ C is a smooth function for 

all rn E Z x {0}, and f0 E A~ Furthermore, for any rn E Z 4, we have the 

following relations: 

= ira, v3) = (m,  = 0 . = .  m = 0, 
(rn, v3) = (rrt, v4) =- 0 ~ A t (m)  • ?n ~ ?Tt E Z • {0}, 

(6.37) (rn, v2} • 0 and (rn, v3) = (rn, v4) = 0 ~ rn E Z x {0} - {0}, 
(rn, va) ~ 0 and (rn, v4) = 0 ~ rn E Z x ( Z -  {0}) x {0}, 
(m,  v4) r 0 m z 2 • ( z  2 - {0} ) .  

Next, by (6.34) it follows that 324 (resp. X1) defines a homogeneous Lie flow 

5" (resp. $'1) on M. Consider for example .~, since the same techniques can be 

used for $1. Then X0, X1, X2, X3 define a transverse Lie parallelism of 5". Now, 

let G = ( ~ 4  .) be the group, whose group operation is given by 

(t, x, y, z) �9 (t', x', y', z') = (t + t', x + x', y + y' + tx' ,  z + A-tz ' ) .  

G is a simply connected solvable Lie group of dimension 4, which is not 

nilpotent. Then the surjective homomorphism of Lie groups D: GA --+ G given 

by D(t,  x l ,  x2, Za, z4) = (t, Xl, x2, - a x 3  + x4) is the developing map of ~'. Hence, 

~" is a homogeneous Lie l~-flow and F = D(FA) C G is its holonomy group, 

where g is the Lie algebra of G. Clearly, K = f' = (Z a x R, .) C G, so that  

K \ G  -- ~ x z T 2 is the compact Heisenberg manifold of dimension 3. It follows 

that  the basic fibration ~rb: M = N Xz ~ --+ W = 1~ Xz ]1 ̀2 of ~', with fiber T 2, 

is also induced by the surjective homomorphism of Lie groups 

GA ~ G 3 given by (t, X l ,X2 ,X3 ,X4)  ' ~ (t, X l ,X2) ,  
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where G3 is the Heisenberg group of dimension 3. Then X1, X4 define the 

basic foliation ~-b of 5 c, and g~l E FC(9 v) is a basis of sections for the Molino 

commuting sheaf C(~') of 5 r .  Similarly, (6.34) implies that the closed one-form 

9' = (-log,k)w0 E AI(S 1) C AI (M)  is the connection form of the canonical 

fiat connection V on C(3 c) with respect to 5(1, so that H ( M , C ( F ) )  = H~(M).  

Consider now the spectral sequence (Ei, di) (resp. (Ei(V), (dr)i)) associated to 

~- (resp. to 3 c and C(Sr)). It follows that 

Ei(V) -- Ei(7) for all i >_ 0, and Ei(V) -- Ei for i = 0, 1. 

Then, using (6.33), (6.35), (6.36) and (6.37), by the same method as in the proof 

of Theorem 6.18, we obtain the following result. 

THEOREM 6.38: Let the situation be as above. Then we have: 

(i) E~ 'v = AU(a)o,wl,a;2,w3) • AV(wd) | A~ • T2), with the C~176 

topology, for 0 < u < 4, 0 < v < 1. 

(ii) The spectral sequence Ei collapses at the second term, and E2 = H ( M )  is 

given by 
E 0,0 .= E 3,0 : E~ ,1 : E 4,1 = ~, 

: : : 1573,1 : 1~2 b"?4,0 i570,1 El '~ E2'~ E2 2'1 ~2 , ~2 : ~ 2 : 0 .  

(iii) The spectral sequence El(7) collapses at the second term, and E2(7) = 

H.~(M) is given by 

E : E ,O : R ,  : : 

E~ 'v (7) = 0 otherwise. 

Example 3: Let the notation be as in Example 2. Then (6.34) implies that 

Xa, X4 (resp. Xa, X1) define a homogeneous Lie foliation Z" (resp. 5Cl) of dimen- 

sion 2 on M. Consider for example 9 v, since the same argument applies to Z'I. It 

is clear that  X0, X1, X2 define a transverse Lie parallelism of Z', and that the sur- 

jective homomorphism of Lie groups D: GA --+ G given by D(t, x l ,  x2, xa, Xd) = 
(t, xl, -c~x3 + Xd) is the developing map of 5 c, where G = (]~3, .) with the group 

operation given by 

(t, x, y) .  (t', x', y') = (t + t', x + x', y + ~-ty ') .  

It follows that  K = D(FA) = (Z 2 x R , . )  C G, so that K \ G  = T 2. Thus the 

basic fibration ~rb: M = NI xz  1 ̀4 --+ 1 ̀2 of ~', with fiber T 3 , is also induced by the 

surjective homomorphism of Lie groups 

GA > (R2,+) given by (t, x l , x2 ,x3 ,xd)  ~ (t, xl). 
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Evidently, X1, X3, X4 define ~b, Xl C FC(J r)  is a basis of sections for C(~), and 

7 = ( - l o g  A)w0 is the connection form of the canonical flat connection V on 

C(5 r) with respect to 21. Therefore, for H(M,C(.T))  and Ei(V), we have 

H(M,C(.T))  = He(M) ,  E~(V) = E~('7) for all i _> 0, and Ei(V) = Ei , i  = O, 1. 

Then, using (6.33), (6.35), (6.36) and (6.37), and the same techniques as in the 

proof of Theorem 6.18, we obtain the following result. 

THEOREM 6.39: Let the situation be as above. Then , for Ei and Ei('7), we 

E~ 'v = AU(wo, wl, w2) | v (W3, W4) | ~ (7 2), with the C~ topology, 

[orO< u <3,  0 < v < 2 .  

(ii) The spectral sequence Ei collapses at the third term, and E2 and E3 -- 

H ( M )  are given by 

E o , o  : : : : : : 

E l , 0  : E22,2 ..~ ]~2, E l , 1  = E2,1 = ]~3, E3,0 = Eo,2 _~ O, 

E~ 'v = 0 otherwise. 

(iii) The spectral sequence Ei(7) collapses at the third term, and E2('7) and 

E3('7) = He(M) are given by 

El '0( '7 )  = E3'~ : E l ' l ( ' 7 )  -~_ E3 ' l  ('7) = ]~, E2'0 ('7) = E22'1 ('7) __~ ]t~ 2, 

E~ 'v ('7) = 0 otherwise, 
E~'~ = E3'1('7) = IR, E2'~ = E2'~('7) - R 2, 

E~ '~ ('7) = 0 otherwise. 

Example 4: Let the notation be as in Example 2. Then, by (6.34) it follows that  

X 2 , X 3 , X 4  (resp. X 2 , X 3 , X 1 )  define a homogeneous Lie foliation b r (resp. ~-1) 
of dimension 3 on M. Consider for example 9 r ,  since the same techniques can 

be used for ~'1. It is easy to see that X0, X1 define a transverse Lie parallelism 

of ~-, and that  the surjective homomorphism of Lie groups D: GA ~ GA given 

by D(t, x l ,  x2, x3, X4) = (t, --OLX 3 -[- X4) is the developing map of 9 v, where GA = 

(~2, .) is the affine group with the group operation given by (t, x ) .  (t', x') = 

( t + t ' , x + A - t x ' ) .  It follows that  K = D(FA) = ( Z x R , . )  C GA, so that  

K \ G A  = S 1. Therefore, ~rb = r s :  M = R Xz T ~ -+ S 1 is the basic fibration of 

5 r.  Thus X1, )22, X3, X4 define S'b, )(1 ~ FC(b r)  is a basis of sections for C(5"), 

and 7 = ( -  10g..A)w0 is the connection form of the canonical flat connection V on 
C(5 r)  with respect to 2(1. Hence, for H ( M , C ( Y ) )  and Ei(V), we have 

H(M,C(Jz))  = He(M),  E~(V) = E~('7) for all i _> 0, and E~(V) = E~,i = O, 1. 

have: 

(i) 
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Then, using (6.33), (6.35), (6.36) and (6.37), and the same argument as in the 

proof of Theorem 6.18, we obtain the following result. 

THEOREM 6.40: Let the situation be as above. Then , for Ei and Ei(~/), we 

have: 

(i) E~ 'v = A~(w0, ~dl) | (w2, w3, fA4) |176 1), with the C~176 topology, 

forO < u < 2, 0 < v < 3. 

(ii) The spectral sequence E~ collapses at the second term, and E2 = H ( M )  is 

given by 

: , o  = El,O = : , 1  = ~ , ~  = : , ~  = ~ , ~  = ~ , 3  = E~,3 = ~, 
~,~ = E~ ,~ = R~, ~ , o  = ~o,~ = o. 

(iii) The spectral sequence Ei(7) collapses at the second term, and E2(7) = 

HT(M ) is given by 

EI'0('y) = E2'~ ) -- EI'I  (:y) = E22'1(~ ') = El'2(~) -~ E2'2(') ') -- R, 

E~ '~ ('~) = 0 otherwise. 

Remark: If in part (v) of Theorem 6.18 we consider the dual flat connection V* 

of V on the dual flat bundle Q~ of Qb, then, for the spectral sequence Ei(V*), 

we have 

E?v(V*)=E~-~'2-~ fori>_2, 0 < ~ < 3 ,  0 < v < Z  

Similarly, in part (iii) of Theorems 6.38, 6.39 and 6.40, we can consider the 

spectral sequence Ei(-q,).  It is easy to check that 

E: '~(-~) ~-,-~,-~ _, =E~ ' (.y: for i>_2,  0 < u < 5 - p ,  0 < v < p ,  

where p C {1, 2, 3} is the dimension of the corresponding foliation F on M. 
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